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ABSTRACT 

This thesis approaches the question of 'How much testing is enough?" by 

formulating a model for the combat situation in which the weapon (e.g., missile) will be 

used. Methods of Bayesian statistics are employed to allow the decision maker to benefit 

from prior information gained in the testing of similar systems by forecasting the 

operational gain from acceptance. A Microsoft Excel V7.0 spreadsheet serves as the user 

interface, and Visual Basic for Applications, Excel's built in macro-language, is the 

language used to produce the source code. The methodology accommodates two different 

tactical usages for the missile: a single shot, or a salvo of two shots. The missile might be 

acceptable if used in the two-shot salvo mode, but not in the single shot mode, and this 

would imply a greater cost per mission. In the end the missile might not be judged cost- 

effective as compared to a competitive system. If the model proposed is (or can become) 

adequate much can be calculated/estimated before any operational tests are made. This 

could assist in economizing on operational testing. 
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THESIS DISCLAIMER 

The reader is cautioned that models and computer programs developed in this 

research may not have been exercised for all cases of interest. While every effort has been 

made, within the time available, to ensure that the models provide accurate results and the 

programs are free of computational and logic errors, they must be further validated and 

verified. The completion of these tasks is left for further research. Any application of 

these models and programs without additional validation and verification is at the risk of 

the user. 
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EXECUTIVE SUMMARY 

As a result of the end of the Cold War, the size and structure of the United States 

military continues to undergo serious scrutiny. Although this is a dynamic process, the 

exact outcome of which is unknown, it is clear that in the future there will be significant 

reductions and changes in force structure, and a subsequent decrease in requirements for 

the generation of large numbers of new weapon systems. 

This trend will impact Testing and Evaluation programs, in that fewer dollars will 

be allocated for the test and evaluation infrastructure and process. As with other aspects 

of the acquisition process, the amount of testing performed should be determined by a 

cost-effectiveness measure. This can be described as a balance between the expense of 

testing and the reduction in risk for fielding the system gained by testing. One of the more 

expensive components of weapon system testing is that which involves destructive testing 

such as firing missiles or detonating ordinance. Such actions are required to provide some 

verification of the systems' operational effectiveness and reliability. The need for testing 

in an operational environment adds further to the expense and complexity of the system 

evaluation. Clearly, testing methods which balance the need for economical efficiency and 

statistical integrity must be explored in order for the war fighter to continue to receive 

systems that are both effective and suitable, with firm attention to cost and value added. 

This thesis presents a formal analytical process for arriving at a number, t*, of 

missiles (or other expendable items) to test out of a finite lot or 'buy" of m. It does so by 

estimating the operational combat utility of the missile, given acceptance. This means that 

testing focuses on adding operational value, rather than on simply reducing uncertainty, as 

simple hypothesis testing procedures tend to do. The methodology accommodates two 

different tactical usages for the missile: a single shot, or a salvo of two shots. The missile 

might be acceptable if used in the two-shot salvo mode, but not in the single shot mode, 

and this would imply a greater cost per mission. In the end the missile might not be 

judged cost-effective as compared to a competitive system.  If the model proposed is (or 

XV 



can become) adequate much can be calculated/estimated before any operational tests are 

made. This could assist in economizing on operational testing. 

The method proposed here is a suggestion and an approach; it is not a finished 

product. Various questions must be answered before the approach is practical. For 

example: how does one specify the prior (parameters) and the probability of successful 

opponent retaliation? Answer: from organizational experience with analogous systems, 

and from distilled expert judgment. Also, what to do with a system that is rejected (after 

testing an appropriate number of times and getting fewer than minimum number of 

successes)? The model does not attempt to address the choice of whether to end the 

program, or to look for particular faults that caused the deficiency and attempt to correct 

them. This choice is situation-specific, but if the system capability is needed and the faults 

are identifiable and rectifiable at reasonable cost then the latter course is attractive. 

Careful retrospective analysis of the test conditions is always important, whatever the 

outcome. 

In summary it is argued that some organized and defensible test planning and 

decision aiding process is needed by the Operational Testing community. The present 

approach is a proposed step on the path to filling that need. 
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I. INTRODUCTION 

A. BACKGROUND 

As a result of the end of the Cold War, the size and structure of the United States 

military continues to undergo serious scrutiny. Although this is a dynamic process, the 

exact outcome of which is unknown, it is clear that in the future there will be significant 

reductions and changes in force structure, and a subsequent decrease in requirements for 

the generation of large numbers of new weapon systems. 

This trend will impact Testing and Evaluation programs, in that fewer dollars will 

be allocated for the test and evaluation infrastructure and process. As with other aspects 

of the acquisition process, the amount of testing performed should be determined by a 

cost-effectiveness measure. This can be described as a balance between the expense of 

testing and the reduction in risk for fielding the system gained by testing. One of the more 

expensive components of weapon system testing is that which involves destructive testing 

such as firing missiles or detonating ordinance. Such actions are required to provide some 

verification of the systems' operational effectiveness and reliability. The need for testing 

in an operational environment adds further to the expense and complexity of the system 

evaluation. Clearly, testing methods which balance the need for economical efficiency and 

statistical integrity must be explored in order for the war fighter to continue to receive 

systems that are both effective and suitable, with firm attention to cost and value added. 

B. CURRENT THINKING CONCERNING UNCERTAINTY 

When a test is designed it is set up to answer a decision maker's question such as, 

'How good is this?" or 'Is it better than the one we have?" The challenge for the test 

designer is to translate these questions into something that is testable. Typically this 

translation results in statistical hypothesis testing. A key consideration in this type of 

testing is the fact that the statistician will never tell you that the hypothesis has been 

proven correct. He will only tell you whether or not it has been rejected. That is to say, 

statistical hypothesis testing can lead to only two outcomes: the hypothesis is rejected, or 



the hypothesis cannot be rejected. Statistical hypothesis testing never directly confirms the 

hypothesis being tested. It is evident that the formulation or wording of the hypothesis is 

critical to the information the testing produces. Furthermore, conventionally applied 

hypothesis testing does not take into account gains from making correct decisions, or 

losses from making incorrect ones. 

Statistical hypothesis testing has another unattractive quality in these days of 

shrinking budgets in that it does not allow the tester to take advantage of prior 

knowledge. Only the data gathered in the context of the particular test formally qualifies 

for analysis. Information available from other resources such as developmental testing, 

testing of similar systems, field experience and the like are formally disregarded. The 

reason this could be unattractive in today's fiscal environment is obvious. Information 

gained from another similar system's testing process may remove the need for at least a 

portion of testing of the new system and thereby conserve the relevant funds. 

C.        ALTERNATIVE THINKING 

Bayes' theorem gives a probabilistically-based rule for updating the degree of 

belief in a hypothesis H (i.e., the probability of H) given additional evidence E and 

background information (context) I: 

,      ,   P{HII}P(E|H,I} 
P{H|E,I} =   

l    ' \ X {      f. (1.1) (      ]        P{E|I) 

Note that all the probabilities are conditional. They specify the degree of our belief in 

some proposition under the assumption that some other propositions are true. This would 

seem to imply that Bayesian methods require the addition of more assumptions to obtain 

results, which is true. The most important assumption made is that of the value of the 

'prior,"the P{H|I} term in the equation above. Here lies the rub. Prior probabilities have 

been not only ignored but abhorred by some classical statisticians. This has been due 

chiefly to the frequently subjective nature of the prior probabilities. In practice there may 

well be sufficient domain knowledge to specify a prior. In general, prior probabilities can 

be assigned to any unknown parameters involved in a formulation. After additional data is 



obtained these priors can be updated to a posterior. Clearly, Bayesian methods can take 

advantage of knowledge from other sources that is relevant to the testing, and thereby 

potentially save cost and time during the test and evaluation phase of system acquisition. 

D.       THESIS OBJECTIVE 

This thesis employs a Bayesian framework in order to address a simplified version 

of a decision problem in destructive testing. It approaches the question of 'How much 

testing is enough?" by formulating a model for the combat situation in which the weapon 

(e.g., missile) will be used. It then employs sequential Bayesian thinking to infer the 

testing level needed to achieve optimal expected gain. Questions of risk are also 

addressed. 





H. PROBLEM FORMULATION AND SOLUTIONS 

A. INTRODUCTION 

A new system is proposed for acquisition, possibly to replace or upgrade an 

existing system. This new system will be accepted provided it meets minimum 

requirements for effectiveness and suitability which will be demonstrated through testing. 

This testing will be performed to replicate the mission and environment to which the 

system is expected to be exposed, and the results of a single test will be binary: success or 

failure. For the purposes of this discussion we assume the system is a missile and that the 

testing is destructive. That is to say, the test will destroy the missile but the record of its 

performance will be retained. 

We begin with m missiles which arrive as a lot and some number, t (0<t<m), of 

them which are to be tested to determine whether or not the lot will be accepted. An 

optimization problem presents itself. If a small number of missiles (2 for example) are 

tested, less information is gained but a larger number of missiles is available to the fleet for 

use, given that the lot is accepted. Conversely, if a large number of missiles (m-2 for 

example) is tested, much more information is gained but only a few of the weapons are 

available for the missions for which they were designed (in this case, only 2). The 

intention of this paper is to provide a formulation that links the information gained from 

testing to the effect that gathering that information has on the missile's future 

performance. In addition, the possibility of informing the decision as to how the missile 

could be "best" employed, or the choice of a shooting policy, will be discussed. 

B. UNCERTAINTY AND OPERATIONAL GAIN 

Assume that each of the missiles has the same, constant, and unknown probability 

of success, p. The decision as to whether or not the missiles should be deployed to the 

fleet will be based on the value of p. An option is to take t of the m missiles and test them. 

The number of tests could range from 0 to m; the latter would of course result in perfect 

knowledge for the lot of missiles but would leave no weapons for the fleet to employ. 



Models can be built to represent the missile as it would be used operationally. For 

example: when the weapon is launched at an opponent he may, if he is missed, return fire 

with a weapon of his own. Let vw be the value of a win, meaning a weapon hit on the 

enemy and vi be the value of a loss, a weapon hit by the enemy; q is the probability that the 

enemy will have a successful counterfire given missile miss. For simplicity, assume the 

value of q is known. The resulting gain function is, after t tests, 

Gx(p, t; m) = (m - t)[vwp - v,(l - p)q] (2.1) 

and represents the total expected gain from fielding a missile with success probability p 

determined from t tests which leaves (m-t) possible engagements. The subscript on Gi 

indicates that one weapon at a time was fired at the enemy. A second model, that 

describes the policy of firing a 2-weapon salvo, has gain function 

(2.2) G2(p,t;m) = L^J[vw(l - (1 - p)2) - v,(l - p)2q 

vw(l-(l-p)2)-Vl(l-p)2q 
m-t 

2   L -v     v     w,       j (22a) 

Where [_xj denotes the largest integer less than or equal to x. We use the approximation 

in the thesis. Note that a shoot-look-shoot policy is not evaluated here. The latter, while 

possibly more economical of fielded missile inventory, may well increase the chance of 

successful counterfire by the opponent (a larger q value). 

C.        THE DECISION RULE 

1. Probability of Success Known 

If the decision maker knows the value of p he might then opt not to test, meaning 

that t=0. He would then evaluate G;(p, 0; m): if the result is sufficiently positive, 

(exceeds a gain threshold), he accepts the system and fields it, while if the result is not 

sufficiently positive he rejects the system, achieving a gain of zero. The acceptance gain 

threshold may be defined by a predetermined minimum value of gain or by a minimum 

improvement in gain relative to a preceding system. This use of gain functions is of course 

quite simplified but serves the purpose of illustrating the method and provoking further 



thought. In any case the decision whether or not to accept a system reduces to whether or 

not the system's probability of success, p, meets or exceeds some minimum threshold, p. 

For example, in the case of the gain function for Gi, it can be seen that in order for the 

system to have positive gain, we must have a p-value that exceedsp = v{q I (vw + v,q). 

2. Uncertainty in p: Bayesian Approach to Acceptance, Given a Test 

The decision to test t leads to the acquisition of data which is assumed to be 

summarized entirely as s successes (s = 0,1,2,..., t).  These data can now be used in the 

development of a likelihood for p by use of a binomial model, and, if p has a beta prior, a 

beta posterior for p: 

n(p;s,t) = B(a',ß')p0'-1(l-p)P'"1 (2-3) 

where a' = a + s and ß' = ß +1 - s. The values (a, ß) characterize the prior density for 

p. This is the classical conjugate prior setup which is standard; see Appendix A for details 

of the derivation. If more investigation shows that an alternative prior is more appropriate 

it is straightforward to supply the necessary changes. Now a decision maker in possession 

of the posterior, equation (2.3), should use it to evaluate the expected gain. This is 

accomplished by computing the gain's expected value with respect to the posterior 

probability distribution, equation (2.3). In the case of Gi, the expectation is linear and of 

the form, 

E[G,(p,t;m)|s,t] = (m-t)[vwE[p|s,t]-Vl(l-E[p|s,t])q], (2.4) 

representing the expected gain from a fielded system. An appropriate decision rule for this 

case is to field the system if E[G,(p,t;m)|s,t] is positive; otherwise 'reject" the system. 

This is mathematically equivalent to fielding the system if Ekj^p^m)^^ > g, where 

g might represent the gain from utilizing an alternative system. Because of the form of Gi 

this is also equivalent to fielding the system if s(t) > s(t) where s(t) represents the 

minimum number of successes out of t tests which results in a positive value for Gi (or a 



value of g > 0). The derivation of s(t)for both the single-weapon and two-weapon salvo 

cases can be found in Appendix B. 

D.       HOW MUCH TO TEST 

1.        Single-Weapon Case 

The previous section indicates what decision to make given the test extent, t, and 

the number of resultant successes, s(t). Now take the position of the decision maker 

before any destructive testing is performed. He must consider testing to any level. That is 

to say, he must consider testing 1, 2, 3, up to m missiles and determining which of the 

values for t provides the best potential for gain from the remaining missiles. Of course the 

results of the testing must satisfy the decision rules previously stated for the system to be 

fielded. The prediction used depends on the binomial model and upon the prior, which is 

assumed to be the beta prior with parameters a and ß: 

n(p) = B(a,ß)pa-1(l-Pr
i. (2-5) 

Conditionally upon p, 

P{s(t) = s|p,t}=ff|ps(l-p)t"s,      0<s<t. (2.6) 

In order to predict s(t) simply remove the condition on p, using the prior; this encapsulates 

the decision maker's uncertain knowledge at the time he must decide on t. Details are 

found in Appendix A. The resultant predictive distribution, b(s;t), is the beta-binomial 

b(s;t) = P{s(t) = s!t}=Q 
/ r(a+ß) Vr(a+s)r(p+t-s (2.7) 
.W(P)A   r(a+ß+t) 

Now the expectation of gain, E[Gi], depends on the value of s(t), which is unknown 

during the planning phase of the test but whose probability distribution is given by 

equation (2.7), a beta-binomial. Consequently, the value of future gain can be predicted 

by unconditioning on s: 



E{E[GI(p,t;m)|s,t]} = (m-t) (vw + v,q) £ xb(x;t)- v,q 2>(x;t) 
x>s(t) x>s(t) 

This expected gain can be evaluated over the entire range oft in principle. 

(2.8) 

2.        Two-Weapon Salvo Case 

Maintaining the aforementioned position of the decision maker and the questions 

facing him, we address the case in which 2 weapons are fired sequentially with no delay 

between shots. The beta prior, equation (2.5) and predictive distribution for s(t), equation 

(2.7), remain unaltered from the single weapon case. Thus, the expectation of G2 also 

depends on the value of s(t) and can be predicted by calculating 

E{E[G2(p,t;m)|s(t),t]} = [*§± vw Zb(x;t)-(vw+v,q) 2 
x>s t x>st 

'(ß+t-x+l)(ß+t-x)' 

(a+ß+t+l)(ot+ß+t)_ 
b(x;t) 

(2.9) 

The derivation of s(t)can be found in Appendix B. This expected gain can also be 

evaluated over the entire range of t and consideration should be given to starting with 

small values oft and proceeding as in the single weapon case. 

E.        RISK OF ACCEPTANCE 

The value oft, denoted by t*, which results in the maximum value of the predicted 

gain is determined by numerical search as described previously. Given that during the 

testing at least s(t) successes were observed and that the system was subsequently 

accepted, we are now interested in the risk associated with this acceptance. Two possible 

measures of this risk are (a) the predicted probability of kill per engagement (e.g., a 

successful engagement), and (b) the probability that the number of mission engagements 

result in fewer successes than some threshold, D. Such information supplements that 

given by the expected value of gain, which involves not just p but also the chosen costs or 

penalties vw , vi, and q. 



1. Single-Weapon Case 

The predicted probability of kill per engagement given acceptance of the system 

emerges from the now familiar beta-binomial distribution, conditional on acceptance of the 

system, s(t) > s(t) and with the beta based on the prior parameters, a and ß: 

Rt) = s>s(t) 
tob^> 

I>(s;t) 
s>s(t) 

(2.10) 

Let M(t) be the number of successful engagements from utilizing the m-t missiles 

in combat. The probability that M(t) will fall short of some minimum standard, D, for kills 

can be found in terms of a binomial. First, 

m-t 
P{M(t) = k|p,s}^  k  ^ 

Next, remove the condition on p using the beta posterior 

p{M(t) = k|s} 

pk(l-p); k = 0,1,2,.. „m-t. 

^m-t^      r(a+ß+t)      r(a+s+k)r(ß-s+m-k) 

UJ r(a+s)r(ß+t-s) r(a+ß+m) 

and the condition on s, given acceptance, yields after simplification 

PJM(t) = k|Acceptancej 

m~f) , (A , r(a+ß+t)   £      r a+j+k r(ß-j+m-k) 

r(a+ß+m) 
z 

j>s(t) {}) 
r(a+j)r(ß+t-j) 

Finally, 

PJM(t) < D]Acceptance} = XP{M(0 = k|Acceptance}. 
k=0 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Now the above, (2.14), can be evaluated at t = t* for various D-values. It may be judged 

that the probability of mission success is simply intolerably low despite the fact that 

expected gain is positive. In that case the acceptance criterion, s(t), may be adjusted, and 

attempts made to increase the intrinsic capability of the new missile system, which could 

encompass performance as well as tactical considerations. 

10 



2. Two-Weapon Salvo Case 

In this case the probability of kill per engagement is found by first deriving the 

expectation of the probability that both weapons fired in the salvo miss their intended 

target, (1-p)2. This expected probability of failure is found in a similar fashion to that of 

the expected probability of success using the beta posterior, described in the single- 

weapon case. The expected posterior probability of success is then E 1 - (l - p)  . Details 

are available in Appendix A. The predicted probability of kill per engagement, like the 

single-weapon case, is conditional on acceptance of the system, s(t) > s(t) and with the 

prior distribution with parameters, a and ß: 

r_(ß+t-s+i)(ß+t-s)i 
41 Kß^+ß+t)Jbfet) 

p(t)=- Zb(s;t) 
s>s(t) 

(2.15) 

Let M(t) be the number of successful engagements from utilizing the m-t missiles 

in combat. Since the missiles will be expended in pairs, let N(m,t) represent the maximum 

number of possible engagements with the missiles that remain after testing which is given 

by the largest integer less than or equal to 
m-t 

denoted by 
m-t 

The probability that 

M(t) will fall short of some minimum standard, D, for kills can also be found in terms of a 

binomial: 

p{M(t) = k|p,s(t)} = (^ (2.16) 

Removing the condition on p using the beta posterior (2.7) and the binomial theorem (See 

Appendix C), 

P{M(t) = k|s} = 

(2.17) 

N(m, tj) * |V| r(a+ß+t) r(2N(m,t)-2k+2n+ß+t-s) 

k    JsUJ^   r(ß+t-s) r(2N(m,t)-2k+2n+a+ß+t)' 

and the condition on s yields after simplification, 

11 



PJM(t) = k| Acceptance} 

(2.18) 

k rj\' 

jas(t)n=o vy 

N(m,t)Yk\       r(a+j)r(2N(m,t)-2k+2n+ß+t-j) 

JiJ 
(-i)n 

r(2N(m,t)-2k+2n+a+ß+t) 

s 
A r(a+j)r(p+t-j) 

-, k = 0,1,2,...N(m,t). 

j>s(t) 
r(a+ß+t) 

Finally, 

PJM(t) < D|Acceptance] = ]Tp{M(t) = k|Acceptance]. (2.19) 
k=0 

As with the single-weapon case, the above, (2.19), can be evaluated at t = t* for 

various D-values. It may be judged that the probability of mission success is simply 

unacceptably low despite the fact that expected gain is positive. In that case the 

acceptance criterion, s(t) may be adjusted, and attempts made to increase the intrinsic 

capability of the new missile system, which could encompass performance as well as 

tactical considerations. 
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m. NUMERICAL EXAMPLE 

A. INTRODUCTION 

Consider a lot of 30 missiles offered by a manufacturer who has performed 

developmental testing and is satisfied that the uncertainty in each missile's kill probability 

per engagement can be described by a beta distribution with parameters a and ß, equal to 

5 and 1 respectively. We assume (2.1) adequately models the system in its combat 

environment and that an expected gain of 0 or greater is sufficient for acceptance although 

a gain of 0 might indicate no improvement over a current system. We further assume the 

values for vw, vi, and q are known to be 1, 5, and 0.75. The 1 and 5 serve to indicate that 

the (negative) value of losing one of our aircraft is 5 times that of causing the destruction 

of one of the opponent's aircraft. The 0.75 indicates that if the enemy has opportunity to 

counterfire he will with 0.75 probability succeed in shooting down our aircraft. 

B. THE ACCEPTANCE POLICY 

Accepting the system based upon a minimum expected gain is mathematically 

equivalent to accepting the system if s(t) > s(t).  The value of s(t) is found by evaluating 

(B.6): 

viq(q + ß + t) 
s(t) = i  - a 

vw+viq 

_5(0.75)(5 + l + t) 
1 + 5(0.75) 

s(t) = Öt-Ä C-1) 
Negative values of s(t) are set equal to 0 while all other values are rounded up to the 

nearest integer. This is consistent with both the idea that only non-negative numbers of 

successes can be observed and that s(t) is to provide a lower bound on acceptable gain 

which is itself restricted to values greater than or equal to 0. 
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Next s(t)and (2.7) are used to evaluate the predicted expected gain given by (2.8) 

for each value oft (0 < t < 30). 

E^G^p^m^tXtjAcceptance} = (m-t) (vw + viq) Z xb(x;t) - v,q £b(x;t) 
x>s(t) x>s(t) 

(3.2) 

(30 -t) (4.75) X 5x 
xäs(t) 

t\ r(5+x)r(i+t+xi 

vxy 
3.75X5 

rf5+xrfi+t+x) 

xy H6+t r(6+t) 

Relevant values oft, s(t), and predicted gain can be seen in Table 3.1. If the predicted 

gain were determined to be zero through the range oft, the system would be rejected 

without testing since there is at best no gain from the testing expenditure. Also, if the 

maximum expected gain is achieved with no testing, t = 0, then the evaluation of the risk 

t 0 1 3 4 5 6 7 

s(t) 0 1 3 3 4 5 6 

EfGj] 6.25 7.77 S.I 3 7.97 7.94 8.05 7.95 7.72 

Table 3.1. Example Results. 

associated with deployment of the system becomes more significant. Neither of these 

situations occur in this example. In this example maximum expected gain occurs when 2 

of the 30 missiles are tested and the remaining 28 missiles are deployed. The policy is to 

accept the missile if both of the tests are successful. It is noticeable that the expected gain 

has a somewhat flat or slowly-changing dependence on t, so a judgment that a few more 

tests are desirable, based on unmodeled considerations, does not incur a great change in 

expected gain. Extra tests might be conducted to reveal surprising system faults. 

Additional testing under different tactical conditions may very well be necessary. 

C.       RISK ASSESSMENT 

We are now interested in the risk associated with acceptance of the missile system 

subsequent to observing at least s(t) successes during testing. The first measure of risk 
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considered is the predicted probability of kill per engagement given acceptance which can 

be obtained from (2.10) in concert with (2.7). The same numerical example is used for 

illustration. 

y(js+x_Wt)   ^
5+*^r(6)r(5+x)r(3+x) 

p(t) = x-§(t) ^   / = ^ y^L s   }>   x      = 0.875 (3.3) 
I>(x;t) 

x>s(t) 

ypr(6)r(5+x)r(3+x) 

x=2 v r(5)      r(8) 

The second measure of risk considers the probability that the number of mission 

engagements result in fewer successes than some threshold, D given acceptance. This step 

is accomplished by evaluating (2.13) 

fm-fi 

k 

rt 
r(a+ß+t)   2      r(a+j+k)r(ß-j+m-k) 

P{M(t) = k|Acceptance} = l *} Mt)[i) 

"(<x+ß+m) 
z 

j>s(t) {}) 
r(a+j)r(ß+t-j) 

(3.4) 

^28^ 2 (2) r(8)Z    r(5+x+k)r(3i-x-k) 
\£J x=2 KXJ 

r(36) 1(2)   . K )      S    r(5+x)r(3-x) 
x=2 V-V 

then simply sum the results for the cumulative distribution up to D. Table 3.2 contains an 

D 0 1 2 3 4 12 13 14 15 24 25 26 27 28 

P{M=D} 0 0 0 0 0 .002 .004 .006 .008 .088 .109 .135 .165 .2 

P{M<D} 0 0 0 0 0 .007 .012 .017 .025 .391 .501 .635 .8 1 

Table 3.2. Risk Summary. 

illustrative portion of the results for this example. In this example there is a 50% 

probability of 25 or fewer successes out of 28, or a 50% chance of 25 or more successes 

out of 28. Such information enhances the decision maker's intuition. 

15 



D.       SUMMARY 

The example above demonstrates a formulation that links the information gained 

from testing to the effect that testing has on a particular measure of the performance of the 

system once fielded. Despite the fact that the example is simple, valuable information is 

gleaned from it. In this example some guidance is provided to an individual who might be 

deciding just how many of the 30 available missiles should be tested. While testing 2 of 

the 30 missiles may not be the answer, if one places some belief in the assumptions made 

at the beginning of the exercise it is apparent that the number to test is nearer 2 than a 

considerably larger number, such as 15. Furthermore, the expense has been minimal 

compared to that of expending weaponry under one set of tactical conditions. Additional 

missile testing under different conditions is needed to explore the range of possible combat 

environments, so it may be reassuring that a comparatively few tests are recommended for 

each of these explorations. 
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IV. SOFTWARE IMPLEMENTATION 

A. INTRODUCTION 

The methods developed in previous chapters are, even for the simplest cases, 

computationally tedious. This invites one to use a computer not only for the convenience 

but also for the speed. Convenience is lost to some degree when one must learn a 

programming language in order execute the type of calculations involved in this 

formulation. On the other hand, more and more people are becoming familiar with 

spreadsheets and their use, especially in the analytical community. Increasingly, 

spreadsheets available commercially are suitable for situations that once required a custom 

program written in a traditional programming language. One such spreadsheet is 

Microsoft's Excel V7.0. Excel and its accompanying macro language , Visual Basic for 

Applications, were used in the production of this project's software. The code for this 

application is located in Appendix D. The 'readme.txt" help file and software installation 

directions are located in Appendix E. 

B. OVERVIEW 

1. Input 

The user is presented with a window which prompts him for the necessary 

information (See Figure 4.1). The inputs for both the single-weapon and two-weapon 

salvo cases are handled in an identical manner. Default values are indicated with the 

purpose of avoiding program crashes caused by blank input fields. Once the user is 

satisfied with his input selection, he merely clicks the 'Begin" button or presses the return 

key on his keyboard to initiate the computations. 
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Entei Appropriate Values in Boxes and Piess Begin 
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p 'v;: Vota? Lk^^:^ngSi;^byE^^agw&ufe) 

Figure 4.1. Input User Interface. 

2. Output 

After the user initiates the computations and the algorithm has executed, a 

spreadsheet page is produced. The worksheet contains a plot of the predicted gain values 

over the range of t (Figure 4.2) and several tables. The tables display information 

regarding the relationship between t, E[Gi], and s(t); the optimal number of missiles to 

test, t*; and the values associated with the risk incurred if the system is fielded. 

B 
t 
0 0 
1 1.666667 
2 2.321429 
3 2.5 
4 2.444444 
5 2.272727 
6 2045455 
7 1.958042 
8 1.794872 
9 1.582418 

10 1.339286 
11 1.078431 
12 0.808824 
13 0.553406 
14 0.281734 
15 0 

0 
1 
2 

Expected "Single-Shot Engagement" Gain after Testing 

3 2.5 , 

4 
5 
5 
6 
7 
8 
9 

10 

2 

©  1.5 

I    1 

10 0.5 
11 

13 )                           2                           *                           G                           6                          10                         12                         14                         16 
NumberT«tod 

k P{M=k}   PflVI s k} p bar(t) 

Max Gain: 2.50 
Optimal t: 3 

Minimum required successes: 3 

7.94E-06 
6.35E-05 
0.000286 
0.000953 
0.00262 

0.006287 
0.013622 
0.027245 

8 0.051084 
9 0.090815 

10 0.154386 
11 0.252632 
12 0.4 

7.94E-06  0. 
7.14E-05 
3.57E-04 
1.31 E-03 
3.93E-03 
1.02E-02 
2.38E-02 
5.11E-02 
1.02E-01 
1.93E-01 
3.47E-01 
6.00E-01 
1.00E+00 

Figure 4.2. Typical Output Worksheet. 
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C.        DEMONSTRATION 

The following serve to demonstrate the scope of this project's software through 

various combinations of weapon cases and analysis outcomes. Although the combinations 

are not exhaustive, they illustrate sufficiently to express the breadth of outcome 

possibilities. 

1. Single-Weapon Case with Testing Recommended 

Consider a lot of 15 missiles whose prior probability of kill has a beta distribution 

with parameters a and ß, equal to 5 and 1 respectively (Figure 4.2). The values of vw, vi 

and q are 1, 5, and 1 respectively. The values used for the other relevant parameters are 

displayed in the output worksheet for convenience. The algorithm finds that maximum 

gain is achieved when 3 missiles are tested and an acceptance policy of 3 successes from 3 

trials is employed. See Figure 4.2 for these results as well as the risk of acceptance 

predictions. 

2. Two-Weapon Salvo Case with No Testing Recommended 

Consider a lot of 15 missiles whose prior probability of kill has a beta distribution 

with parameters a and ß, equal to 5 and 1 respectively (Figure 4.3). The values of vw, vi 

and q are 1, 5, and 1 respectively.  The values used for the other relevant parameters are 

A       I       B       I C       I D       I E       I        F       I G       I           H          |           I           |       J       |        K       | L           |       M       |        N 

1 t     E[G2] 
0  5.357143 

s_bar 
0 

3 
4 

1 5 
2 4.642857 

0 
0 

Expected "2 Weapon Salvo" Gain after Testing 

5 3  4.321429 1 

6 4    3.97619 2 6T 

7 5  3.625541 2 

8 6   3.277972 3 

9 7   2.914585 3 c 

10 8     2.56216 4 O 

11 9   2.199051 5 £3- 

12 10   1.836399 5 
**- 13 11   1.472204 6 

14 12       1.1046 6 1 - 
15 13   0.738206 7 

16 

17 
18 
19 

14 0.369306 
15 0 

8 
8 0 2 4                          6                          8                         10                        12 

Number Tested 
14                        16 

20 

21 

Vw v,           q a                ß              m           k P{M=k} P{M<k} pbar(t) 
1 5                1 5                       1                    15                0   8.60E-05 8.60E-05   0.952381 

22 1   0.000529 6.15E-04 
23 2   0.002012 2.63E-03 
24 Max Gain: 5.36                                                                 3   0.006188 8.82E-03 
25 Optimal t: 0                                                                 4   0.017293 2.61 E-02 
26 Minimum required successes: 0                                                                 5   0.047796 7.39E-02 
27 6   0.147272 2.21E-01 
28 7   0.778823 1.00E+00 

„2a 

Figure 4.3. Two-Weapon Salvo Case with No Testing Recommended. 
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displayed in the output worksheet for convenience. Note that the cost values are the same 

as those in Figure 4.2. However this case envolves consideration for the two-weapon 

salvo where the penalty for accepting a system with a low value of p is small. 

Subsequently, the algorithm finds that maximum gain is achieved when 0 missiles are 

tested and suggests system acceptance without testing (it is likely that this would be 

overridden in practice). In this case the risk of acceptance analysis is particularly germane. 

See Figure 4.3 for these results. 

3.        Single-Weapon Case with System Rejection 

Consider a lot of 15 missiles whose prior probability of kill has a beta distribution 

with parameters a and ß, equal to 5 and 1 respectively (Figure 4.4). The values of vw, vi 

and q are 1, 25, and 1 respectively. The values used for the other relevant parameters are 

displayed in the output worksheet for convenience. The algorithm finds that maximum 

gain that could be achieved is no better than that gain which exists without the missile 

system being considered and suggests system rejection without testing. In this case the 

cost of loss is Vi = 25 as compared to vi = 5 in Figure 4.3.   Acceptance of this system 

A       I B       I        C       | D       I        E       I        F       |        G       |           H           |           I           |        J        |        K       |          L         |       M       | N 

1 
2 

t 
0 

E[G1]     s_bar 
0 

3 1 0 Expected "Single-Shot Engagement" Gain after Testing 
4 2 0 
5 3 0 1   T 

6 4 0 0.9 
7 5 0 

0.8 
ft 6 0 
* 7 0 

c 0.7- 

10 8 0 U  0.6 

11 9 0 2 0.5 J 

12 10 0 a. 0.4 - 

13 11 0 " 0.3- 

14 12 0 0.2 - 

15 13 
14 

0 
0 

0.1 - 

17 15 0 
1« 
19 

u                      ^                                                          NunfcerTesttd 

20 

21 

vw           V|            q            a                 ß               m            k  P{M=k}   P{M z k) p bar(t) 
1               25                 1                 5                       1                    15                    REJECT   SYSTEM 

22 
23 
24 Max Gain :         0.00 
25 Optimal t:              0 
28 Minimum required successes:           NA 

-27. 

Figure 4.4. Single-Weapon Case with System Rejection. 

would result in gain which is at best zero and probably negative. In other words, 

acceptance of the system will place the decision maker in no better a position. See Figure 

4.4 for these results. 
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4.        Two-Weapon Salvo Case with Testing Recommended 

Consider a lot of 15 missiles whose probability of kill has a beta distribution with 

parameters a and ß, equal to 5 and 1 respectively (Figure 4.5). The values of vw, vi and q 

are 1, 35, and 1 respectively. The values used for the other relevant parameters are 

displayed in the output worksheet for convenience. Note that testing is recommended 

here (accepting the system if 5 successes are observed in 5 tests) while testing is not 

recommended Figure 4.3. In this case the cost of a loss here is vi = 35 as compared to vi = 

A       I       B       I c _l D       I        E       I        F       I G      |         H         |         I         |      J      |      K      | L           |       M       |        N 

1 t     E[G2] 
0                0 

s_bar 
0 

3 
4 

1 0 
2 0 

0 
0 

Expected "2 Weapon Salvo" Gain after Testing 

5 3           0.75 3 
6 4   1.055556 4 \2 , 

7 5   1136364 5 
8 6   1.101399 6 
9 7   1.007326 7 c 

»0.8 
10 8  0.884615 8 
11 9  0.824176 8 2 0.6 

12 
13 

10 0.735294 
11 0.612745 

9 
10 

&0.4 
Ul 

14 12   0.470201 11 0.2 
15 13   0.316821 12 

16 
17 
18 
19 

14 0.15873 
15 0 

13 
13 0                          2 4                          6                          8                         10                        12 

Ntvnber Tested 
14                        16 

20 

21 

vw           v,           q a                 ß               m            k P{M=k} P{M<k} pbar(t) 
1              35                1 5                       1                    15                0   5.41E-06 5.41E-06   0.984848 

22 1   8.72E-05 9.26E-05 
23 2   0.000846 9.38E-04 
24 Max Gain: 1.14                                                                 3   0.006875 7.81 E-03 
25 Optimal t: 5                                                                 4   0.059094 6.69E-02 
26 Minimum required successes: 5                                                                 5   0.933093 1.00E+00 

JH. 

Figure 4.5. Two-Weapon Salvo Case with Testing Recommended. 

5 in Figure 4.3. It is reasonable that more care be taken in the present more costly case: 

the penalty for accepting a low value of p is much greater here than in the case of Figure 

4.3. The algorithm finds that maximum gain is achieved when 5 missiles are tested and an 

acceptance policy of 5 successes from 5 trials is employed. See Figure 4.5 for these 

results as well as the risk of acceptance predictions. 
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V. SUMMARY DISCUSSION 

This thesis presents a formal analytical process for arriving at a number, t*, of 

missiles (or other expendable items) to test out of a finite lot or 'buy" of m. It does so by 

estimating the operational combat utility, called gain, of the missile, given acceptance. 

This means that testing focuses on adding operational value, rather than on simply 

reducing uncertainty, as simple hypothesis testing procedures tend to do. The 

methodology accommodates two different tactical usages for the missile: a single shot, or 

a salvo of two shots. The missile might be acceptable if used in the two-shot salvo mode, 

but not in the single shot mode, and this would imply a greater cost per mission. In the 

end the missile might not be judged cost-effective as compared to a competitive system. If 

the model proposed is (or can become) adequate much can be calculated/estimated before 

any operational tests are made. This could assist in economizing on operational testing. 

The method proposed here is a suggestion and an approach; it is not a finished 

product. Various questions must be answered before the approach is practical. For 

example: how does one specify the prior (parameters) and the probability of successful 

opponent retaliation? Answer: from organizational experience with analogous systems, 

and from distilled expert judgment. Also, what to do with a system that is rejected (after 

testing t* times and getting fewer than s(t*) successes)? The model does not attempt to 

address the choice of whether to end the program, or to look for particular faults that 

caused the deficiency and attempt to correct them. This choice is situation-specific, but if 

the system capability is needed and the faults are identifiable and rectifiable at reasonable 

cost then the latter course is attractive. Careful retrospective analysis of the test 

conditions is always important, whatever the outcome. 

In summary it is argued that some organized and defensible test planning and 

decision aiding process is needed by the OT test community. The present approach is a 

proposed step on the path to filling that need. 
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APPENDIX A. BINOMIAL BAYES 

The probability of a number of successes given a fixed number of trials is 

calculated using the binomial distribution. The usual parameters are n, the number of 

trials; s, the number of successes in n trials; and p, the probability of success for any of the 

single trials. In the case of the beta-binomial distribution the parameter p is assumed to be 

random having a beta distribution. After n trials have been executed determining s, the 

Bayes update of the beta prior for p is possible. 

A.        THE BETA POSTERIOR 

Assuming a Beta prior for p, 

n»W = r^^p"",(1"p)P"1' °^i;o<a;o<ß> (A.i) 

and binomial sampling (n trials, s successes), the likelihood function for p is 

L(p;n,s) = 0p>(l-Pr. (A.2) 

The Bayes posterior is found by multiplying the prior for p by the likelihood and 

normalizing 

Qp-(i-pry-'(i-pf 
n(p|n,s,a,ß) = YJT^  (A.3a) 

jrW-pry-xi-prdp 
0^ 

n(p|n,s,a,ß)= Cpa4-1(l-p)p4a--1. (A.3b) 

Also, since the density must integrate to 1, 

r(q + ß + n) 
c = r(a+s)r(ß+n-s)- (A4) 

Then, the beta posterior mean for p is 

E[p;a'ßM=oT?ßi- (A.5) 
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Later the expectation of (1-p)2 will be needed.   It can be derived in a fashion similar to 

that above 

E[(l - p)2|n,s] = B(a',ß')j(l - p)V'"'(l - pf^dp (A.6a) 
o 

E[(l-p)>,s] = TMJ}p«-(l-pri-'dp (A.6b) 

where a' = a + s and ß' = ß +1 - s. Finally, the mean beta posterior is 

L J    (a + ß + n + l)(a + ß + n) 

B.        THE PREDICTIVE DISTRIBUTION FOR THE NUMBER OF 
SUCCESSES 

This derivation takes advantage of the beta prior for p in the development of a 

predictive distribution for the number of successes, s, in t trials. A binomial model that 

utilizes the beta prior, (A. 1), and that is conditional on p is formed 

p{s(t)=^p,t}=QP
s(i-py"s. (A8) 

Removing the condition on p yields 

P«.)=*}=j(;)P-(.-p)-i^p-(1-Pr'dP.      (A.9) 

Let a' = a + sand ß' = ß +1 - s and combine terms to obtain 

w-rt-Q^H'-'r'*        (A10) 

and simplify to get 

P(.tt - alt) - ^r(a + ß)r(a + s)r(ß + t-s) (A n) P W -W " g r(a)r(p)    r(a+P+t)    • (A11) 
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APPENDIX B. DERIVATION OF MINIMUM SUCCESS THRESHOLD 

This appendix describes and then derives an expression for s(t), the minimum 

number of successes needed during testing in order to accept the system being tested. 

A. INTRODUCTION 

Consider a decision policy in which a system must provide a minimum level of gain 

from testing and subsequent fielding, given that the system is accepted. Let this minimum 

gain be g.   Because of the form of the gain functions, (2.1) and (2.2), used in this paper 

acceptance of the system based on observing at least a minimum number of successes 

during testing, s(t), is mathematically equivalent to acceptance of the system based on 

receiving a minimum gain, g. 

B. DERIVATION OF s(t) 

1.        Single-Weapon Case 

For ease of discussion, a gain of 0 has been deemed the minimum value of gain 

which allows system acceptance in this paper, 

EfG^p^mKtXt)]^. (B.l) 

From (2.4) it is evident that 

(m-t)[vwE[p|s(t),t]-viq(l-E[p|<t),t])] > 0 (B.2) 

implies that 

E[p|s(t),t]>-^_ (B3) 
L J    vw+v,q 

Next substituting the beta posterior (A.5), 

a + s(t) ^      v{q 

a + ß + t    vw+vLq 
(B.4) 

and solving for s(t) gives 
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Vi^fß + t) 
s( t) >  a. 

vw+Viq 

Since s(t) > s(t) for non-negative gain it follows that 

\,q(a + ß + t) 

(B.5) 

-<t) = -a (B.6) 
vw + v,q 

where |~z~| is the smallest non-negative integer greater than or equal to z. 

2.        Two-Weapon Salvo Case 

Again for ease of discussion, a gain of 0 has been deemed to be in this paper, the 

minimum value of gain which allows system acceptance. 

E[G2(p,t;m|s(t),t)]>0. (B.7) 

In a fashion similar to the single-weapon case, 

(m-t) 
vw-(vw+viq)E(l-p)|<t),t >0 

and substituting the beta posterior, (A.7), yields for the bracketed term 

(ß + t-s + l)(ß + t-s) 
Vw-(vw+viq)(a + ß + t + i)(a + ß + t) >0. 

(Note we are replacing 

Let 

m-t 

and let 

Now rearrange (B.9) to obtain 

in (2.2) with I ^—- I .) 

vw(a + ß + t+l)(a + ß + t) 
vw+viq 

r = t - s. 

(B.8) 

(B.9) 

(B.10) 

(B.ll) 

(ß + r + l)(ß + r)-Ä = 0 

r2+(2ß + l)r + (ß2+ß-A) = 0. 
(B.12) 
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The quadratic formula is now utilized to find the roots of (B.12). The root of 

interest, r*, will be the one that is real, positive and largest in magnitude. The roots can be 

found by computing 

■2ß-l±^/(2ß + l)2-4(ß2+ß-A) 
(B.13) 

2 

Finally, 

s(t) = max(t-|_r*J,o) (B.14) 

where |_xj is the largest integer less than or equal to x. 
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APPENDIX C. BINOMIAL THEOREM APPLICATION 

This appendix states the binomial theorem and discusses its application with regard 

to the derivation of a formulation for risk assessment in the two-weapon salvo case. 

A.        THE BINOMIAL THEOREM 

(*+y)a=El?>ry 
r=0 

n  „i„n-r (C.l) 

B.        APPLICATION OF BINOMIAL THEOREM 

Let M(t) be the number of successful engagements possible after t missiles have 

been tested and let N(m,t) = 
m-t 

represent the largest integer less than 
m-t 

.   The 

probability of k successes out of N(m, t) engagements conditional on p, the probability of 

success for a single missile, and s, the number of successes during testing of t missiles is 

given by 

'N(m,t)' 
p{M(t)=k|p,s}=^^^(i-(i-Pr)k((i-P)2) 

2\N(m,t)-k 

Applying the binomial theorem yields 

'N(m,t)^ P{M(t)=k|p,s}. ^ ((i-prp-i k-ir((i-P)T(ir «*) 
n=oVn. 

and reduces to 

P{M(f) = k|p,s} 
'N(m,t)' 

J 
2£W((>-P)!) 

2N(m,t)-2k+2n 

Removing the condition on p 

(C.2) 

(C.4) 
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PJM(t) = k|s} 

{{   k   J^oWv   ;^v    w> r(a + s)r(ß + t-s)F     v    V) 

N(m,tfi * fkY r(g + ß + t)      r(a + s)r(2N(m,t)-2k + 2n + ß + t-s) 
k    J^U^_ ' r(a + s)r(ß +1-s)    r(2N(m,t)-2k + 2n + a + ß + t-s) 
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APPENDIX D. VISUAL BASIC FOR APPLICATIONS CODE 

This appendix contains the Visual Basic for Applications code used in the spreadsheet 

implementation software. 

A.        G1.XLS, SINGLE WEAPON GAIN WORKBOOK 

LT John R. Gorman 
Spring 1997 
Test Length Decision Analysis 

Sub get_inputO 

This section gets input for vw, vl, q, a, b, & m. The main subroutine 
is then called and executed. 

Dim DBoxBegin As Boolean 
DialogSheetsflnput Box").EditBoxes("input_vw").Text = "1" 
DialogSheetsflnput Box").EditBoxes(ninput_vl").Text = "5" 
DialogSheets("lnput Box").EditBoxes("input_q").Text = "1" 
DialogSheets("lnput Box").EditBoxes("input_a").Text = "5" 
DialogSheetsflnput Box").EditBoxes("input_b").Text = "1" 
DialogSheetsflnput Box").EditBoxes("input_m").Text = "15" 
DBoxBegin = DialogSheets("lnput Box").Show 
If Not DBoxBegin Then Exit Sub 
Sheets("Results").Range("vw").Value = _ 

DialogSheets("lnput Box").EditBoxes("input_vw").Text 
Sheets("Results").Range("vr).Value = _ 

DialogSheetsflnput Box").EditBoxes("input_vl").Text 
Sheets("Results").Range("q").Value = _ 

DialogSheetsflnput Box").EditBoxes("input_q").Text 
Sheetsf Results").Rangef alpha").Value = _ 

DialogSheetsflnput Box").EditBoxesfinput_a").Text 
Sheets("Results").Range("beta").Value = _ 

DialogSheetsflnput Box").EditBoxes("input_b").Text 
Sheets("Results").Range("m").Value = _ 

DialogSheetsflnput Box").EditBoxes("input_m").Text 
Call plot_gain 

End Sub 

Sub plot_gain() 

' Calculate expected mean gain for single weapon shot, display 
' tables and plots. 
i 

Application.ScreenUpdating = False 
Dim vw As Variant 
Dim vl As Variant 
Dim q As Variant 
Dim a As Variant 
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Dim b As Variant 
Dim t As Variant 
Dim s_bar As Variant 
vw = Rangefvw"). Value 
vl = Range("vl"). Value 
a = Range("alpha").Value 
b = Range("beta").Value 
m = Range("m").Value 
q = Range("q"). Value 
Sheets("Results").Select 
Range(T).Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("s_bar").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Sheets("Results").Select 
Range("E_G1").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
For t = 0 To m 

Range("t").Select 
ActiveCell.Offset(t, 0).Value = t 
s_bar = Application.RoundL)p(_ 

Application.Max(0, ((vl * q * (a + b + t) / (vw + vl * q)) - a)), _ 
0) 

EG1 = 0 
Forj = s_barTot 

bJ1 = Exp(Application.Gammal_n(a + b)) * Exp(Application.GammaLn(a + j)) 
Exp(Application.Gammal_n(b + t - j)) 

bJ2 = Exp(Application.GammaLn(a)) * Exp(Application.GammaLn(b)) *_ 
Exp(Application.GammaLn(a + b + t)) 

bJ3 = Application. Combin(t, j) 
bj = bJ1 / bJ2 * bJ3 
EG1_1 = ((vw + vl * q) * (a + j) / (a + b + t)) - (vl * q) 
EG1 = EG1 + (EG1_1 * bj) 

Next j 
EG1 = Application.Max(EG1 * (m -1), 0) 
Range("E_G1").Select 
ActiveCell.Offset(t, 0).Value = EG1 
ActiveCell.Offset(t, 1).Value = s_bar 

Nextt 
Dim check_range As Range 
Dim optimal_t As Integer 
Dim t_counter As Integer 
Dim optimal_gain As Variant 
Sheets("Results").Select 
Range("E_G1").Activate 
Range(ActiveCeli,ActiveCell.End(xIDown)).Select 
Set check_range = Selection 
Range("max_gain"). Select 
ActiveCell.Value = Application.Max(check_range) 
optimal_gain = Application.Max(check_range) 
Range("E_G1").Activate 

34 



For t_counter = 1 To m + 1 
If ActiveCell.Value = optimal_gain Then 

optimalj = ActiveCell.Offset(0, -1).Value 
GoTo loop_exit 
End If 

ActiveCell.Offset(1, 0).Activate 
Next t_counter 

loop_exit: 
Range("t_star").Value = optimal_t 

This routine calculates the risks associated with accepting the 
'system after testing. 
i 

Dim k As Variant 
Dim PM1 As Variant 
Dim PM2 As Variant 
Dim PM3 As Variant 
Dim PM As Variant 
Dim t_star As Variant 
Dim m_t As Variant 
Dim i As Variant 
Dim p_bar As Variant 
Dim p_bar1 As Variant 
Dim p_bar2 As Variant 
t_star = Range("t_star").Value 
m_t = m - t_star 
s_bar_star = Application.Max( _ 

(Application.RoundUp((vl * q * (a + b + t_star) 
/(vw + vl*q))-a, 0)), 0) 

Range("s_bar_star").Value = s_bar_star 
p_bar = 0 
p_bar1 = 0 
p_bar2 = 0 
Sheets("Results").Select 
Range("PM").Select 
Range(ActiveCelI, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("k").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("PMD").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("p_bar").Select 
Selection.Clear 
If ((t_star = 0) And Not (optimal_gain = 0)) Then 

GoTo NoTest 
Elself (optimal_gain = 0) Then 

GoTo Reject 
Else 
For k = 0 To m_t 
PM2 = 0 
PM3 = 0 
PM1 = (Application.Combin(m_t, k) *_ 
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Exp(Application.GammaLn(a + b + t_star))) / _ 
Exp(Application.Gammal_n(a + b + m)) 

For j = s_bar_star To t_star 
PM2 = PM2 + ((Application.Combin(t_star, j) *_ 

Exp(Application.GammaLn(a + j + k)) *_ 
Exp(Application.GammaLn(b - j + m - k)))) 

PM3 = PM3 + ((Application.Combin(t_star, j) *_ 
Exp(Application.GammaLn(a + j)) *_ 
Exp(Application.Gamma!_n(b + t_star - j)))) 

Nextj 
PM = PM1 * (PM2 / PM3) 

Sheets("Results").Select 
Range("PM").Select 
ActiveCell.Offset(k, 0).Activate 
ActiveCell.Value = PM 
Nextk 
For j = s_bar_star To t_star 

p_bar1 = p_bar1 + (a + j) * ((Application.Combin(t_star, j) * _ 
Exp(Application.Gammal_n(a + j)) *_ 
Exp(Application.GammaLn(b + t_star - j)))) 

p_bar2 = p_bar2 + ((Application.Combin(t_star, j) *_ 
Exp(Application.Gammal_n(a + j)) *_ 
Exp(Application.Gammal_n(b + t_star - j)))) 

Nextj 
p_bar = p_bar1 / ((a + b + t_star) * p_bar2) 
Range("p_bar").Select 
ActiveCell.Value = p_bar 
Range("p_bar_comment").Select 
ActiveCell.Clear 
Range("PMD"). Select 
ActiveCell.FormulaR1C1 = "=RC[-1]" 
For i = 1 To m_t 

ActiveCell.Offset(1, 0).Activate 
ActiveCell.FormulaR1C1 = "=RC[-1]+R[-1]C" 

Next i 
Range("k").Select 
For i = 0 To m_t 

ActiveCell.Value = i 
ActiveCell.Offset(1, 0).Activate 

Next i 
End If 
GoTo Fini 
Reject: 
MsgBox "Reject System" 
Range("s_bar").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("s_bar_star").Value = "NA" 
Sheets("Results").Select 
Range("p_bar").Select 
Selection.Clear 
Range("p_bar_comment").Select 
Selection.Clear 
Range("PM").Select 
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ActiveCell.Value = "REJECT" 
ActiveCell.Offset(0,1).Activate 
ActiveCell.Value = "SYSTEM" 
GoTo Fini 

NoTest: 
MsgBox "Optimal Gain Achieved with No Testing" 
Sheets("Results").Select 
Range("p_bar").Select 
Selection.Clear 
ActiveCell.Value = a / (a + b) 
ActiveCell.Offset(0, 1).Value = "<- Prior probability used since 0 tested" 
Range("k").Select 
ActiveCell.Value = "NO" 
ActiveCell.Offset(0, 1).Activate 
ActiveCell.Value = "TESTING" 
ActiveCell.Offset(0, 1).Activate 
ActiveCell.Value = "DONE" 
Fini: 
Sheets("Results").Range("c2").Select 

End Sub 

This routine provides for the functions that occur on workbook opening. 

Sub Auto_openO 
Call get_input 
ActiveWorkbook.Protect contents = True 
End Sub 

B.        G2.XLS, TWO-WEAPON SALVO GAIN WORKBOOK 

LT John R. Gorman 
Spring 1997 
Test Length Decision Analysis 

Sub get_inputO 

This section gets input for vw, vl, q, a, b, & m. The main subroutine 
'is then called and executed. 

Dim DBoxBegin As Boolean 
DialogSheets("lnput Box").EditBoxes("input_vw").Text = "1" 
DialogSheetsflnput Box").EditBoxes("input_vl").Text = "15" 
DialogSheetsflnput Box").EditBoxes("input_q").Text = "1" 
DialogSheets("lnput Box").EditBoxes("input_a").Text = "5" 
DialogSheets("lnput Box").EditBoxes("input_b").Text = "1" 
DialogSheets("lnput Box").EditBoxes("input_m").Text = "15" 
DBoxBegin = DialogSheets("lnput Box").Show 
If Not DBoxBegin Then Exit Sub 
Sheets("Results").Range("vw").Value = _ 

DialogSheets("lnput Box").EditBoxes("input_vw").Text 
Sheets("Results").Range("vl").Value = _ 
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DialogSheets("lnputBox").EditBoxes("input_vl").Text 
Sheets("Results").Range("q").Value = _ 

DialogSheets("lnputBox").EditBoxes("input_q").Text 
Sheets("Results").Range("alpha").Value = _ 

DialogSheets("lnputBox").EditBoxes("input_a").Text 
Sheets("Results").Range("beta").Value = _ 

DialogSheets("lnputBox").EditBoxes("input_b").Text 
Sheets(MResults").Range("m"). Value = _ 

DialogSheets("lnputBox").EditBoxes("input_m").Text 
Call plot_gain 

End Sub 

Sub plot_gainO 

' Calculate expected mean gain for single weapon shot, display 
' tables and plots. 
t 

Application.ScreenUpdating = False 
Dim r1 As Variant 
Dim r2 As Variant 
Dim r As Variant 
Dim vw As Variant 
Dim vl As Variant 
Dim q As Variant 
Dim a As Variant 
Dim b As Variant 
Dim t As Variant 
Dim s_bar As Variant 
vw = Range("vw").Value 
vl = Range("vl"). Value 
a = Range("alpha").Value 
b = Range("beta")-Value 
m = Range("m").Value 
q = Range("q").Value 
Sheets("Results").Select 
Range("s_bar").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range(T).Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("E_G2").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Fort = OTo m 

Range(T). Select 
ActiveCell.Offset(t, 0).Value = t 
r1 = -b - 0.5 + 0.5 * (1 + ((4 * vw * (a + b +1 + 1) * (a + b +1)) / (vw + vl * q))) A 0.5 
r2 = -b - 0.5 - 0.5 * (1 + ((4 * vw * (a + b + t + 1) * (a + b + t)) / (vw + vl * q))) A 0.5 
If ((r1 <= 0) And (r2 <= 0)) Then GoTo RejectJ 
If (((r2 > 0) And (r1 > 0)) And (r1 > r2)) Then r = r1 
If (((r2 > 0) And (r1 > 0)) And (r2 > r1)) Then r = r2 
If ((r2 > 0) And (r1 <= 0)) Then r = r2 
If ((r1 > 0) And (r2 <= 0)) Then r = r1 
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s_bar = Application.Max(0, (t - Application.RoundDown(r, 0))) 
EG2 = 0 
Forj = s_barTot 

bJ1 = Exp(Application.Gammal_n(a + b)) * Exp(Application.Gammal_n(a + j)) *. 
Exp(Application.GammaLn(b +1 - j)) 

bJ2 = Exp(Application.GammaLn(a)) * Exp(Application.GammaLn(b)) *_ 
Exp(Application.GammaLn(a + b +1)) 

bJ3 = Application.Combin(t, j) 
bj = bJ1 / bJ2 * bJ3 
EG2_1 = vw - ((vw + vl * q) * (b + t - j + 1) * (b + t - j) _ 

/((a + b + t+1)*(a + b + t))) 
EG2 = EG2 + (EG2_1 * bj) 

Nextj 
EG2 = Application.Max(EG2 * (m -1) / 2, 0) 
Range("E_G2").Select 
ActiveCell.Offset(t, 0).Value = EG2 
ActiveCell.Offset(t, 1).Value = s_bar 
GoTo next_t 

Reject_t: 
Range("E_G2").Select 
ActiveCell.Offset(t, 0).Value = 0 
ActiveCell.Offset(t, 1).Value = 0 

next_t: 
Nextt 
Dim check_range As Range 
Dim optimal_t As Integer 
Dim t_counter As Integer 
Dim optimal_gain As Variant 
Sheets("Results").Select 
Range("B2") .Activate 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Set check_range = Selection 
Range("max_gain").Select 
ActiveCell.Value = Application. Max(check_range) 
optimal_gain = Application.Max(check_range) 
Range("b2") .Activate 
For t_counter = 1 To m + 1 

If ActiveCell.Value = optimal_gain Then 
optimal_t = ActiveCell.Offset(0, -1).Value 
GoTo loop_exit_4 

End If 
ActiveCell.Offset(1,0).Activate 

Next t_counter 
loop_exit_4: 
Range("t_star").Value = optimal_t 

i 

This routine calculates the risks associated with accepting the 
'system after testing. 

Dim t_star As Variant 
Dim s_bar_star As Variant 
Dim p_bar As Variant 
Dim p_bar1 As Variant 
Dim p_bar2 As Variant 
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t_star = Range("t_star").Value 
r1_star = -b - 0.5 + 0.5 * (1 + ((4 * vw * (a + b + t_star + 1) * _ 

(a + b + t_star)) / (vw + vl * q))) A 0.5 
r2_star = -b - 0.5 - 0.5 * (1 + ((4 * vw * (a + b + t + 1) * _ 

(a + b + t)) / (vw + vl * q))) A 0.5 
If (((r2_star > 0) And (r1_star > 0)) And (r1_star > r2_star)) Then r_star = r1_star 
If (((r2_star > 0) And (r1_star > 0)) And (r2_star > r1_star)) Then r_star = r2_star 
If ((r2_star > 0) And (r1_star <= 0)) Then r_star = r2_star 
If ((r1_star > 0) And (r2_star <= 0)) Then r_star = r1_star 
s_bar_star = Application.Max(0, (t_star - Application.RoundDown(r_star, 0))) 
Range("s_bar_star").Value = s_bar_star 
m_t = m - t_star 
N_mt = Application.RoundDown(m_t / 2, 0) 
p_bar = 0 
p_bar1 = 0 
p_bar2 = 0 
Sheets("Results").Select 
Range("PM"). Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("k").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("PMD").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Sheets("Results").Select 
Range("p_bar").Select 
Selection.Clear 
If ((t_star = 0) And Not (optimal_gain = 0)) Then 

GoTo NoTest 
Elself (optimal_gain = 0) Then 

GoTo Reject 
Else 
For k = 0 To N_mt 
PM1 =0 
PM2 = 0 

For j = s_bar_star To t_star 
PM1a = 0 
For n = 0 To k 

PM1a = PM1a + ((Application.Combin(t_star, j)) *_ 
(Application.Combin(N_mt, k)) *_ 
(Application.Combin(k, n)) *_ 
((-1)An)*_ 
Exp(Application.GammaLn(a + j)) *_ 
Exp(Application.GammaLn(2 * N_mt -2*k + 2*n + b + t_star - j)) / _ 
Exp(Application.Gammal_n(2 * N_mt -2*k + 2*n + a + b + t_star))) 

Next n 
PM1 =PM1 +PM1a 
PM2 = PM2 + ((Application.Combin(t_star, j)) *_ 

Exp(Application.GammaLn(b + t_star - j)) * _ 
Exp(Application.GammaLn(a + j)) / _ 
Exp(Application.Gammal_n(a + b + t_star))) 

Nextj 
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PM = PM1 / PM2 
Sheets("Results").Select 
Range("PM").Select 
ActiveCell.Offset(k, 0).Activate 
ActiveCell.Value = PM 
Nextk 
Range("PMD").Select 
ActiveCell.FormulaR1C1 = "=RC[-1]n 

For i = 1 To N_mt 
ActiveCell.Offset(1, 0).Activate 
ActiveCell.FormulaR1C1 = "=RC[-1]+R[-1]C" 

Next i 
Range("k").Select 
For i = 0 To N_mt 

ActiveCell.Value = i 
ActiveCell.Offset(1, 0).Activate 

Next i 
For j = s_bar_star To t_star 

p_bar1 = p_bar1 + ((1 - ((b + t_star - j + 1) * (b + t_star - j) / 
((a + b + t_star + 1) * (a + b + t_star)))) * _ 

Application.Combin(t_star, j) *_ 
Exp(Application.Gammal_n(a + j)) *_ 
Exp(Application.Gammal_n(b + t_star - j))) 

p_bar2 = p_bar2 + ((Application.Combin(t_star, j) *_ 
Exp(Application.Gammal_n(a + j)) * _ 
Exp(Application.GammaLn(b + t_star - j)))) 

Nextj 
p_bar = (p_bar1 / p_bar2) 
Range("p_bar")Select 
ActiveCell.Value = p_bar 
Range("p_bar_comment"). Select 
Selection.Clear 
End If 
GoTo Fini 
Reject: 
Range("t"). Activate 
For i = 0 To m 

ActiveCell.Offset(i, 0).Value = i 
ActiveCell.Offset(i, 1).Value = 0 

Next i 
Range("max_gain").Value = 0 
Range("t_star").Select 
Selection.Clear 
MsgBox "Reject System" 
Range("s_bar").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("s_bar_star"). Value = "NA" 
Sheets("Results").Select 
Range("k").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("p_bar")Select 
Selection.Clear 
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Range("p_bar_comment").Select 
Selection.Clear 
Range("PMD").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
Range("PM").Select 
Range(ActiveCell, ActiveCell.End(xlDown)).Select 
Selection.Clear 
ActiveCell.Value = "REJECT" 
ActiveCell.Offset(0, 1).Activate 
ActiveCell.Value = "SYSTEM" 
GoTo Fini 
NoTest: 
MsgBox "Optimal Gain Achieved with No Testing" 
Sheets("Results").Select 
Range("p_bar"). Select 
Selection.Clear 
ActiveCell.Offset(0,1).Value = "<- Prior probability used since 0 tested" 
N_m = Application.RoundDown(m / 2, 0) 
Range("k").Select 
For k = 0 To N_m 
PM1 =0 
PM2 = 0 
s_bar_star = 0 
t_star = 0 

For j = s_bar_star To t_star 
PM1a = 0 
For n = 0 To k 

PM1a = PM1a + ((Application.Combin(t_star, j)) *_ 
(Application.Combin(N_mt, k)) *_ 
(Application.Combin(k, n)) *_ 
((-1)An)*_ 
Exp(Application.Gammal_n(a + j)) *_ 
Exp(Application.Gammal_n(2 * N_mt -2*k + 2*n + b + t_star - j)) / _ 
Exp(Application.Gammal_n(2 * N_mt-2*k + 2*n + a + b + t_star))) 

Next n 
PM1 =PM1 +PM1a 
PM2 = PM2 + ((Application.Combin(t_star, j)) *_ 

Exp(Application.GammaLn(b + t_star - j)) * _ 
Exp(Application.GammaLn(a + j)) /_ 
Exp(Application.Gammal_n(a + b + t_star))) 

Nextj 
PM = PM1/PM2 
SheetsfResults").Select 
Range("PM").Select 
ActiveCell.Offset(k, 0).Activate 
ActiveCell.Value = PM 
Nextk 
Range("PMD").Select 
ActiveCell.FormulaR1C1 = "=RC[-1]" 
For i = 1 To N_mt 

ActiveCell.Offset(1, 0).Activate 
ActiveCell.FormulaR1C1 = "=RC[-1]+R[-1]C" 

Next i 
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Range("k").Select 
For i = 0 To N_m 

ActiveCell.Value = i 
ActiveCell.Offset(1, 0).Activate 

Next i 
For j = s_bar_star To t_star 

p_bar1 = p_bar1 + ((1 - ((b + t_star - j + 1) * (b + t_star - j) / _ 
((a + b + t_star + 1) * (a + b + t_star)))) * _ 

Application.Combin(t_star, j) * _ 
Exp(Application.GammaLn(a + j)) *_ 
Exp(Application.Gammal_n(b + t_star - j))) 

p_bar2 = p_bar2 + ((Application.Combin(t_star, j) *_ 
Exp(Application.GammaLn(a + j)) *_ 
Exp(Application.Gammal_n(b + t_star - j)))) 

Nextj 
p_bar = (p_bar1 / p_bar2) 
Range("p_bar").Select 
ActiveCell.Value = p_bar 
Fini: 
Range("G5").Activate 

End Sub 

This routine provides for the functions that occur on workbook opening. 

Sub Auto_openO 
Call get_input 
ActiveWorkbook.Protect contents = True 
End Sub 
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APPENDIX E. INSTALLATION INSTRUCTIONS 

The installation diskette has the following three files: 

1. Gl .xls - the Excel workbook which contains the algorithm for analysis of 

the single weapon case. 

2. G2.xls - the Excel workbook which contains the algorithm for analysis of 

the two-weapon salvo case. 

3. Readme.txt - an ASCII text file which contains the text found in this 

appendix. 

To use the analysis files, simply open them with Excel V7.0 or later and follow the 

dialog box prompts. Input parameters can be changed and the algorithm repeated by 

clicking the button on the worksheet marked "Press to Change Parameters." The 

workbooks open recommending a "read-only" format. This is done to protect the 

structure of the "Results" worksheet. The worksheets which contain the input dialog box 

and the source code are "hidden." The source code is also "protected" and cannot be 

altered. If one wishes to alter the code to develop the ideas of the software further, cut 

and paste the appropriate code into a different workbook and proceed. 
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